Sentiment analysis helps businesses make sense of all this amorphous text by mechanically tagging it.
—Sentiment analysis (also known as opinion mining ) refers to the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information. Sentiment analysis is widely applied to voice of the customer materials such as reviews and survey responses, online and social media, and healthcare materials for applications that range from marketing to customer service to clinical medicine. It’s estimated that 80% of the world’s data is unstructured, in other words it’s unorganized. Huge volumes of text data (emails, support tickets, chats, social media conversations, surveys, articles, documents, etc), is created every day but it’s hard to analyze, understand, and sort through, not to mention protracted and expensive. Sentiment analysis, however, helps businesses make sense of all this amorphous text by mechanically tagging it.