No TL;DR found
We investigate the dynamics of tracer nanoparticles in bulk supercooled nanoparticle matrices using confocal microscopy. We mix fluorescent (tracer) and undyed (matrix) charged-stabilized polystyrene nanoparticles with tracer-to-matrix particle size ratios δ = 0.34, 0.36, 0.45, 0.71 at various matrix volume fractions ϕ. Single-particle and collective dynamics were obtained from particle-tracking algorithms and differential dynamic microscopy (DDM), respectively. The long-time behavior of the tracer mean-square displacement (MSD) and the shape of the distributions of particle displacements depend on δ and ϕ. At sufficiently large ϕ, small tracers (δ ≤ 0.36) remain mobile and subdiffusive but large tracers (δ ≥ 0.45) are dynamically arrested. The relaxation times determined from the intermediate scattering function (ISF) increase with δ and ϕ. Anomalous logarithmic decays in the ISF are observed for tracers of size δ ≤ 0.36 over a length scale of four to ten matrix particle diameters. These results provide insight into how penetrant size affects the transport of nanoparticles in porous media with soft interparticle interactions.