Using x-ray crystallography and computer imaging, it has been possible to determine the three-dimensional structure of many proteins and to design small molecule peptides which can either mimic or block the function of the protein and thus be useful therapeutic agents.
The quest to understand how genetic information is passed from one generation to the next reached a major milestone in the 1950s with the discovery of the complementary double-helix structure of DNA by Watson and Crick and the demonstration by Kornberg that DNA was capable of self-replication. These breakthroughs provided the stimulus for a flurry of research that culminated in a basic understanding of the genetic code and a statement of the central dogma of molecular biology: DNA goes to RNA goes to protein. In expressing a gene, RNA is formed from the DNA template in a process called transcription. The process of RNA forming protein is known as translation. During translation, amino acids are linked to form protein. The primary structure of proteins is thus determined by the sequence of amino acids. Using x-ray crystallography and computer imaging, it has been possible to determine the three-dimensional structure of many proteins and to design small molecule peptides which can either mimic or block the function of the protein and thus be useful therapeutic agents.