A simple deep learning model in combination with word embeddings is employed for the classification of tweets as human-generated or bot-generated using a publicly available Tweepfake dataset displaying the effectiveness and highlighting its advantages in accurately addressing the task at hand.
- This paper showcases a simple deep learning model in combination with word embeddings is employed for the classification of tweets as human-generated or bot-generated using a publicly available Tweepfake dataset. A conventional Convolutional Neural Network (CNN) architecture is devised, leveraging Fast Text word embeddings, to undertake the task of identifying deepfake tweets. To showcase the superior performance of the proposed method, this study employed several machine learning models as baseline methods for comparison. These baseline methods utilized various features, including Term Frequency, Term Frequency-Inverse Document Frequency, FastText, and FastText subword embeddings. Moreover, the performance of the proposed method is also compared against other deep learning models such as Long short-term memory (LSTM) and CNN-LSTM displaying the effectiveness and highlighting its advantages in accurately addressing the task at hand.