No TL;DR found
Surveys measuring happiness or preferences generate discrete ordinal data. Ordered response models, which are used to analyze such data, suffer from an identification problem. Their conclusions depend on distributional assumptions about a latent variable. We propose using response times to solve that problem. Response times contain information about the distribution of the latent variable through a chronometric effect. Using an online survey experiment, we verify the chronometric effect. We then provide theoretical conditions for testing conventional distributional assumptions. These assumptions are rejected in some cases, but overall our evidence is consistent with the qualitative validity of the conventional models. (JEL C14, D60, D91, I31)