Home / Papers / Thermodynamic uncertainty relations for steady-state thermodynamics.

Thermodynamic uncertainty relations for steady-state thermodynamics.

5 Citations2022
Takuya Kamijima, Sosuke Ito, A. Dechant
Physical review. E

No TL;DR found

Abstract

A system can be driven out of equilibrium by both time-dependent and nonconservative forces, which gives rise to a decomposition of the dissipation into two nonnegative components, called the excess and housekeeping entropy productions. We derive thermodynamic uncertainty relations for the excess and housekeeping entropy. These can be used as tools to estimate the individual components, which are in general difficult to measure directly. We introduce a decomposition of an arbitrary current into housekeeping and excess parts, which provide lower bounds on the respective entropy production. Furthermore, we also provide a geometric interpretation of the decomposition and show that the uncertainties of the two components are not independent, but rather have to obey a joint uncertainty relation, which also yields a tighter bound on the total entropy production. We apply our results to a paradigmatic example that illustrates the physical interpretation of the components of the current and how to estimate the entropy production.