Home / Papers / Multinomial Logistic Regression

Multinomial Logistic Regression

88 Citations2008
Carolyn J. Anderson, Leslie Rutkowski
journal unavailable

No TL;DR found

Abstract

Multinomial logistic regression is used to predict categorical placement in or the probability of category membership on a dependent variable based on multiple independent variables. The independent variables can be either dichotomous (i.e., binary) or continuous (i.e., interval or ratio in scale). Multinomial logistic regression is a simple extension of binary logistic regression that allows for more than two categories of the dependent or outcome variable. Like binary logistic regression, multinomial logistic regression uses maximum likelihood estimation to evaluate the probability of categorical membership. Multinomial logistic regression does necessitate careful consideration of the sample size and examination for outlying cases. Like other data analysis procedures, initial data analysis should be thorough and include careful univariate, bivariate, and multivariate assessment. Specifically, multicollinearity should be evaluated with simple correlations among the independent variables. Also, multivariate diagnostics (i.e. standard multiple regression) can be used to assess for multivariate outliers and for the exclusion of outliers or influential cases. Sample size guidelines for multinomial logistic regression indicate a minimum of 10 cases per independent variable (Schwab, 2002). Multinomial logistic regression is often considered an attractive analysis because; it does not assume normality, linearity, or homoscedasticity. A more powerful alternative to multinomial logistic regression is discriminant function analysis which requires these assumptions are met. Indeed, multinomial logistic regression is used more frequently than discriminant function analysis because the analysis does not have such assumptions. Multinomial logistic regression does have assumptions, such as the assumption of independence among the dependent variable choices. This assumption states that the choice of or membership in one category is not related to the choice or membership of another category (i.e., the dependent variable). The assumption of independence can be tested with the Hausman-McFadden test. Furthermore, multinomial logistic regression also assumes non-perfect separation. If the groups of the outcome variable are perfectly separated by the predictor(s), then unrealistic coefficients will be estimated and effect sizes will be greatly exaggerated. There are different parameter estimation techniques based on the inferential goals of multinomial logistic regression analysis. One might think of these as ways of applying multinomial logistic regression when strata or clusters are apparent in the data. Unconditional logistic regression (Breslow & Day, 1980) refers to the modeling of strata with the use of dummy variables (to express the strata) in a traditional logistic model. Here, one model is applied to all the cases and the stata are included in the model …