Home / Papers / Advances in Biochemistry and Biotechnology Seaweed Biotechnology to Combat Desertification

Advances in Biochemistry and Biotechnology Seaweed Biotechnology to Combat Desertification

88 Citations2018
V. V. Ginneken
journal unavailable

A model to combat desertification and create new arable area by first -based on seaweed biotechnological techniquescreate a special “Ulva-Desert” High-Temperature-Tolerance (HTT)-strain is suggested.

Abstract

This paper presents biotechnological laboratory work on the successful isolation of protoplasts from the green seaweed species Ulva lactuca, an intertidal seaweed species from the moderate North Atlantic well known for its algae blooms and tremendous biomass production. We suggest a model to combat desertification and create new arable area by first -based on seaweed biotechnological techniquescreate a special “Ulva-Desert” High-Temperature-Tolerance (HTT)-strain. This strain which is suitable for desert aquaculture could be obtained by protoplast fusion with the tropical heat resistant Ulva reticulata for which protoplasts with a temperature tolerance of 30°±1°C were recently isolated by the research group of Gupta et al. Seaweeds of the genus Ulva are well-known for their tremendous oceanic “seaweed-blooms” or “green-tides” of green biomass for which we hypothesize they will create appropriate sulfur gasses with main emphasis on volatile dimethyl sulfide [(CH3)2S] (DMS) and its precursor β-dimethylsulfonium propionate [(CH3)2 S CH2CH2COO -] (DMSP) which will following the sulfur cycle stimulate at the oceans cloud formation resulting in rainfall in the deserts and climate cooling. In this way seaweed biotechnology combined with natural geosphere-biosphere processes might reverse the trend of global warming, combat desertification, contribute to climate change mitigation, at intermediate terms (≈decades) and increase the global potential of renewable arable area.