Home / Papers / Quantum Techniques in Machine Learning

Quantum Techniques in Machine Learning

88 Citations2017
M. Loog, J. Romero, Jonathan Olson
journal unavailable

The next round of invited talks on quantum autoencoders for efficient compression of quantum data and quantum Hamiltonian learning using Bayesian inference on a quantum photonic simulator are presented.

Abstract

s 9 Marco Loog — Surrogate Losses in Classical Machine Learning (Invited Talk) . . . 11 Minh Ha Quang — Covariance matrices and covariance operators in machine learning and pattern recognition: A geometrical framework (Invited Talk) . . . . . . 12 Jonathan Romero, Jonathan Olson, Alan Aspuru-Guzik — Quantum autoencoders for efficient compression of quantum data . . . . . . . . . . . . . . . . . . 13 Iris Agresti, Niko Viggianiello, Fulvio Flamini, Nicolò Spagnolo, Andrea Crespi, Roberto Osellame, Nathan Wiebe, and Fabio Sciarrino — Pattern recognition techniques for Boson Sampling Validation . . . . . . . . . . . . . . . . . 15 J. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, A. Laing, J. G. Rarity, J. L. O’Brien, and M. G. Thompson — Quantum Hamiltonian learning using Bayesian inference on a quantum photonic simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Luca Innocenti, Leonardo Banchi, Alessandro Ferraro, Sougato Bose and Mauro Paternostro — Supervised learning of time independent Hamiltonians for gate design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Davide Venturelli — Challenges to Practical End-to-end Implementation of Quantum Optimization Approaches for Combinatorial problems (Invited Talk) . . . . . . 22 K. Imafuku, M. Hioki, T. Katashita, S. Kawabata, H. Koike, M. Maezawa, T. Nakagawa, Y. Oiwa, and T. Sekigawa — Annealing Computation with Adaptor Mechanism and its Application to Property-Verification of Neural Network Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Simon E. Nigg, Niels Niels Lörch, Rakesh P. Tiwari — Robust quantum optimizer with full connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 William Cruz-Santos, Salvador E. Venegas-Andraca and Marco Lanzagorta — Adiabatic quantum optimization applied to the stereo matching problem . . . . . 26 Alejandro Perdomo Ortiz — Opportunities and Challenges for Quantum-Assisted Machine Learning in Near-Term Quantum Computers . . . . . . . . . . . . . . . . . 27 Christopher J. Turner, Konstantinos Meichanetzidis, Zlatko Papić, and Jiannis K. Pachos — Distinguishing free and interacting as pattern recognition . . 28 Konstantinos Meichanetzidis, Christopher J. Turner, Ashk Farjami, Zlatko Papić, and Jiannis K. Pachos — Free-fermion descriptions of parafermion chains and string-net models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Ashk Farjami — Identifying Free Particle Correlations in Topologically Ordered Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Ivan Glasser, Nicola Pancotti, Moritz August, Ivan D. Rodriguez, and J. Ignacio Cirac — Neural Networks Quantum States, String-Bond States and chiral topological states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Raban Iten, Roger Colbeck, and Matthias Christandl — Quantum Circuits for Quantum Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Seth Lloyd — Prospects in Quantum Machine Learning (Invited Talk) . . . . . . . 38 Jiannis Pachos — Knots, Computation and Quantum Physics (Invited Talk) . . . 39